

and

EGT Enterprises, Inc.

Thielsch Engineering, Inc.

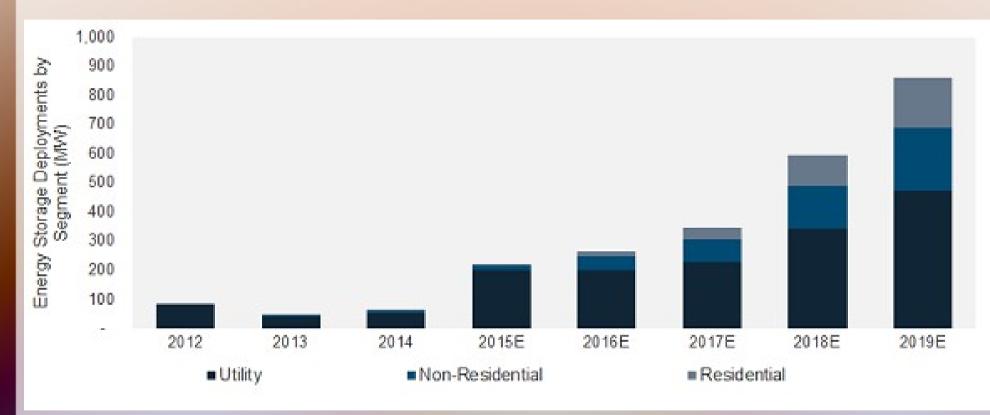
Grid-Scale Electricity Storage And Dispatch Carbon Capture With Power Generation

Association of Consulting Chemists and Chemical Engineers

American Institute of Chemical Engineers, New Jersey Section

Joint Meeting

March 24, 2015


INTRODUCTION

- Renewable Energy Causes Grid Instability
- Massive Electricity Storage Needed
 - Scope of Problem and Potential Storage Solutions
- EGT's Proposed Solution
 - Electric Reaction Technology
 - Direct Carbon Fuel Cells
 - Gas Turbine Technology
- EGT's Technology & Market Development Status
 A WORK IN PROGRESS

Energy Storage

Needed to manage intermittent supply of renewables-generated power into the nation's grid **Examples of Electricity Storage Systems** Hydro and Pumped-Hydro **Batteries and Flow Batteries** Flywheels and Compressed Air Systems Stored Natural Gas as Variable Gas Turbine Fuel Solar Water-Electrolyzed Hydrogen into Natural Gas

Energy Storage Market Growth

250% Growth 2014 -2015 (est.) Source: GTM Research

http://www.greentechmedia.com/research/us-energy-storage-monitor? utm_source=email1&utm_medium=email&utm_campaign=USESM

What are Fossil Fuels?

Natural Gas

Oil

Wood / Biomass ?

Peat

Lignite

Coal

Petroleum Coke

Substantial CO₂ emitted when used for powergen

Fossil Fuels Cause CO₂ Emissions Related to Climate Change

 $CH_4 + 8N_2 + 2O_2 \rightarrow CO_2 + 8N_2 + 2H_2O_2$

 Heavier gaseous fuels, liquid fuels, and carbonaceous solids produce relatively more carbon dioxide than natural gas when burned in power plants for electricity or for any other energygeneration purpose

Produced CO₂ very difficult to separate from N₂

"Renewable" Fuels Are Needed

Wind

Solar

Hydro

Geothermal

Wood / Biomass ?

Net negligible or reduced CO₂ emitted when used for powergen

U.S.A. and Germany						
Percent Renewables on Grid						
U.S.A.						
2002	9%					
2006	9%					
2013	13%			California	23%	
<u>Germany</u>						
		2010	6%			
		2014	30%			
5X growth in 4 years has created grid stability issues						

Renewables Cause Grid Instability

Wind and Solar are intermittent power generators

• Hourly, daily, seasonal, regulatory and unplanned

•Other assets must compensate in real time

•U.S.A. Risks

- Nuclear, Hydro and Geothermal are at base load
- Inflexible Coal plants and Coal plant closures
- Limited Gas Turbine efficient-operating ranges
- Slow Nuclear renaissance

2013 - U.S.A. Renewables Generation

Power Source	Summer Capacity (GW)	Percent Total Capacity	Capacity Factor	Annual Energy Billion kWh	Percent Annual Production
Hydro	79.0	7.4	0.4	269	6.6
Wind	60.4	5.7	0.3	168	4.1
Wood	8.2	0.8	0.4	40	1.0
Biomass	5.0	0.5	0.5	20	0.5
Geothermal	2.7	0.3	0.7	17	0.4
Solar	6.2	0.6	0.2	9	0.2
Total	161.7	15.2	0.3	522	12.9

California- "Duck Curve"

Chart 1

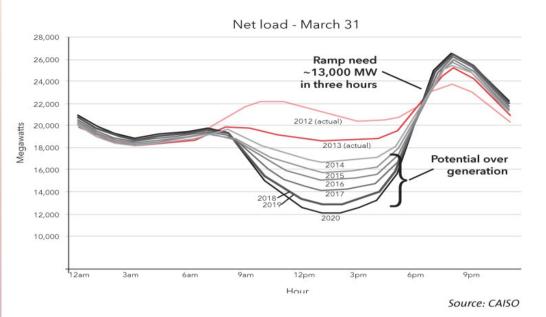
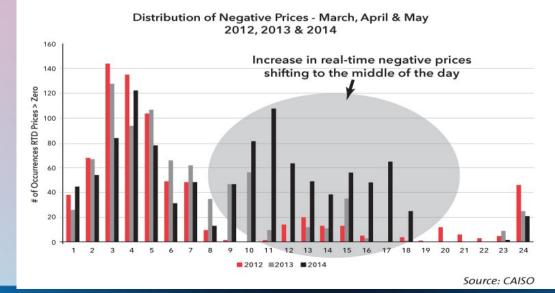



Chart 2

California Has Time To Adjust

GOALS

% Renewables on CAISO Grid

2010	20%
2020	33%
2030	50%

2050

80% reduction from "1990 CO₂"

CALIFORNIA GRID - ISSUES

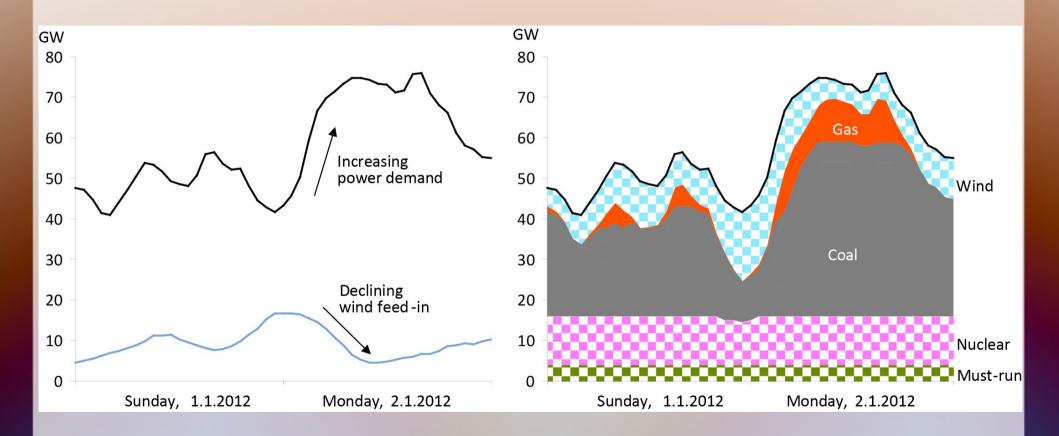
- Potential Rise in Renewable Portfolio Standard
 - RPS to 40% in 2024 from 33% in 2020 today

Renewables Unable to Assist Frequency Response
 They are designed to run at full output

- Renewables Curtailments 2014 onward
 - Due to Over-Generation by Renewables

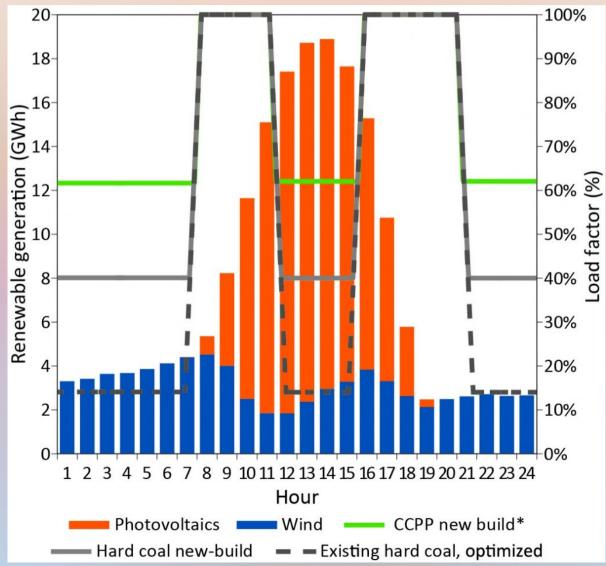
California Demand Reduction to Ease Cycling on Fossil Powergen

- Micro-Grids and Distributed Generation
- Combined Heat and Power (District Heat/Cool)
- Circuit-Level Analysis for capital investment
- Building Codes for energy efficiency
- Imported Biomass
- Regulatory Innovation / Curtailment Pricing
 Helps to Achieve % Renewable Mandates


CA – Electricity Storage Required

• Market Scheduling from 1 hour to 15 minutes — Time-shift the over-generation periods

- Change of "Bid Floors" from -\$30 to -\$300
 - Renewables pay to get their power on the grid
- Out-of-State Backup Commitments


PLUS GRID-SCALE ELECTRICITY STORAGE

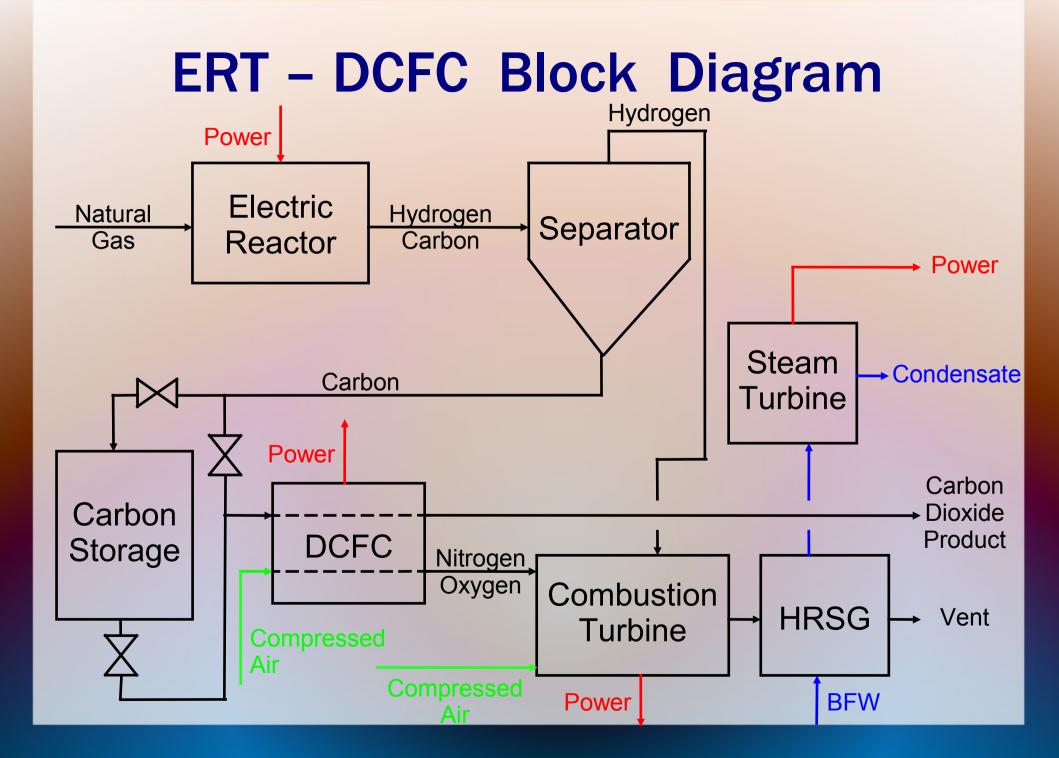
2012 Germany Experience (1) Wind Supply v. Total Demand

Source: PennEnergy.com

Germany Experience (2) Response to Imbalance

Germany Experience (3) Responses and Consequences

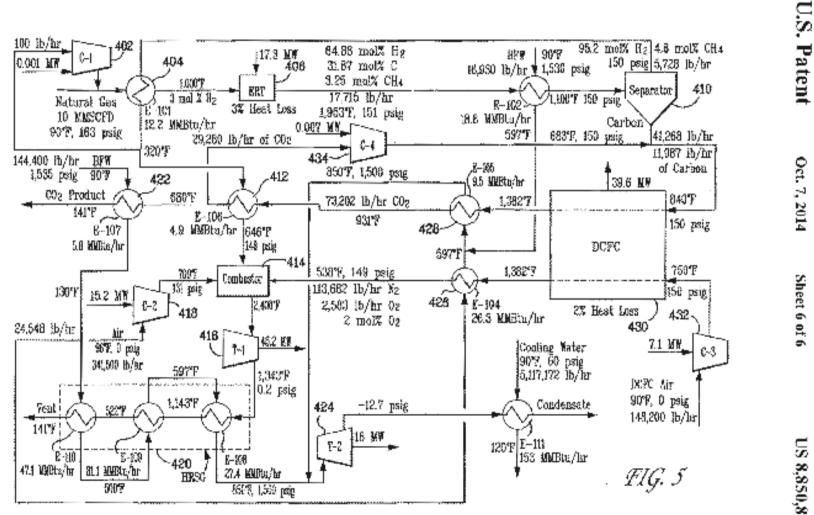
- Increased flexibility of legacy coal power plants
- Rapid build of new coal plants with high and/or maximum turn-down flexibility built-in
- No carbon dioxide capture built-in to new plants
- \$20 billion/year net subsidy cost to consumers
- Electricity prices to consumers nearly doubled
 - 80% above Euro Average Price
- Electricity subsidy to industry at tax-payer expense
- Many new gas turbine plants remain under-utilized


U.S.A. & Germany Summary

- Emerging situations "Work in Progress"
- Many concurrent variables in play
 - Efficiency
 - Economics
 - Technologies
 - Federal, State & Local Policies
 - Jobs and Taxes
 - Politics
 - Etc.

EGT's Patents Define A Solution

"Electric Reaction Technology For Fuels Processing" U.S.A. Patent 7,563,525 (2009) and "Carbon Capture With Power Generation" U.S.A. Patent 8,850,826 (2014)


<u>Electric Reaction Technology Integrated with</u> <u>Gas Turbine and Fuel Cell Technologies</u>

EGT Process Features

- Electric Reactor decomposes H.P. natural gas into hydrogen and carbon
- Pressurized H₂ continuous fuel for a gas turbine
- Pressurized Carbon stored and dispatched at pressure to fuel a Direct Carbon Fuel Cell
- DCFC electricity is sufficient to run the Electric Reactor and export, on average, 15-20% more than the gas turbine nameplate capacity
- Inherent energy storage and carbon capture

EGT Power – Process Detail

Oct. 7, 2014 Sheet 6 of 6

US 8,850,826 B2

2.5

EGT's Process Benefits

Optimum Profitability

- Electricity sales prices vary continuously by minute, hour, day, day of week, season, wind velocity, solar intensity, tariff requirements (government) and extraordinary events
- Carbon is stored at times of low electricity sales prices with net reduced megawatt-hour sales
- Carbon flows to DCFC during times of high prices with net increased megawatt-hour sales

One Additional Technology Required

Direct Carbon Fuel Cells

 $C + O_2 \rightarrow CO_2$ + Direct Current Electricity

- Electrochemically convert solid carbon into CO₂ with <u>double the efficiency of hydrogen fuel cells</u>
- Produce a pressurized 100% pure CO₂ product
- Produce a pressurized O₂ depleted air stream

EGT – DCFC Integration Benefits (1)

- Hydrogen is burned in a gas turbine to generate electricity at Brayton Cycle efficiency
- O₂ Depleted Air is used as temperature dilutant and oxidant in a gas turbine to generate electricity at Brayton Cycle Efficiency
- Hot CO₂ is used in steam-cogen to generate electricity at Rankine Cycle efficiency

<u>Captures 92+% of CO_2 as pure CO_2 </u> ready for sequestration and sale / beneficial use

EGT – DCFC Integration Benefits (2) Solar and Wind Integration

- Electric Reactor uses DC for heating fuel gases
 - Solar Cells and Wind Turbines no longer need
 Direct Current to Alternating Current inverters
 - Eliminates ~5% inverter conversion losses
- "Green Boost" to natural gas for powergen since ERT Power produces 15-20% more electricity from a given quantity of natural gas
- Analogous reduction in "tons CO₂ per megawatt"

First ERT Power Plant Likely At Renewable Site

History of DCFC's

Invented a century ago but never commercialized

Attempts in 1990's to use coal as fuel – but failed

- Rapid electrolyte contamination by ash, sulfur, metals and dirt
- R&D continues at low public financial commitment
- Unknown corporate and private commitments

EGT ready to manage DCFC commercialization with the best concept: <u>MOLTEN ALKALI ELECTROLYTE</u>

DCFC Electrochemistry SARA, Inc.

Cathode Reaction

 $O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$

Anode Reactions

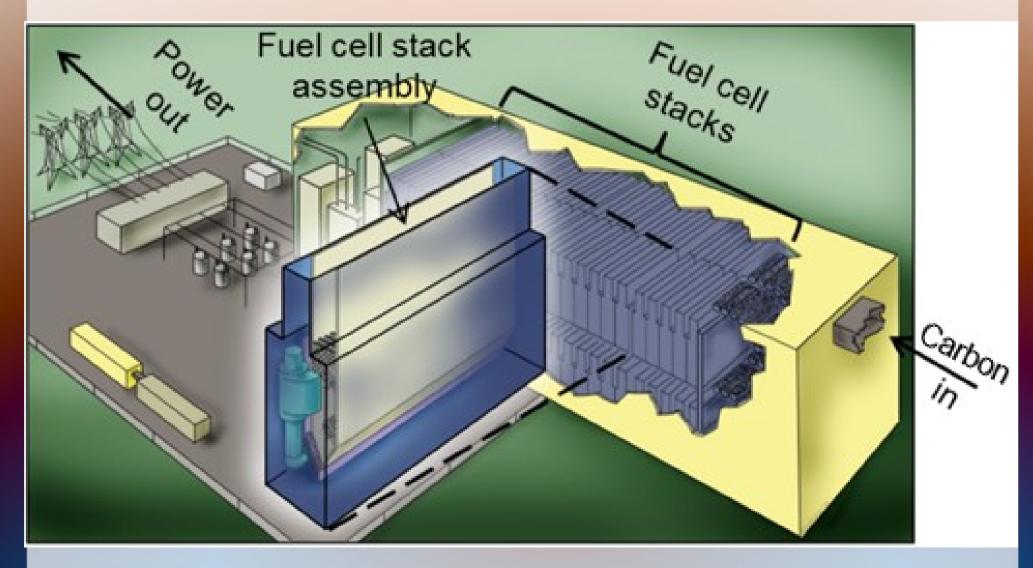
 $C + 6OH^- \rightarrow CO_3^{2-} + 3H_2O + 4e^-$

 $C + 2CO_3^{2-} \rightarrow 3CO_2 + 4e^-$

U.S. D.O.E.

Technology Readiness Levels

•ERT – TRL 4


- Industrial heritage
- Past the lab stage and ready for demonstration in commercial environment
- •H2/Carbon Separation TRL 4
- DCFC TRL 3
 - Proof of concept at lab scale
 - Industrial prototyping needed to TRL 4

DCFC Prototypes – To TRL-3 SARA, Inc.

SARA's Technology Developed Over Multiple Generations of Successful Prototypes

SARA's Molten Salt – DCFC Vision of TRL-6

MA-DCFC and ERT-Carbon Preferred

- Lowest operating temperature
- Lowest cost materials of construction
- Simplicity and scalability of process reactor
- For any DCFC, ERT-Carbon is pure carbon
 - Made molecule by molecule from decomposition of clean gaseous hydrocarbons
 - No dirt, ash, sulfur, metals or oxygen
 - Sub-micron particle size for high mass transfer rates in molten electrolyte

DCFC Progress Needed

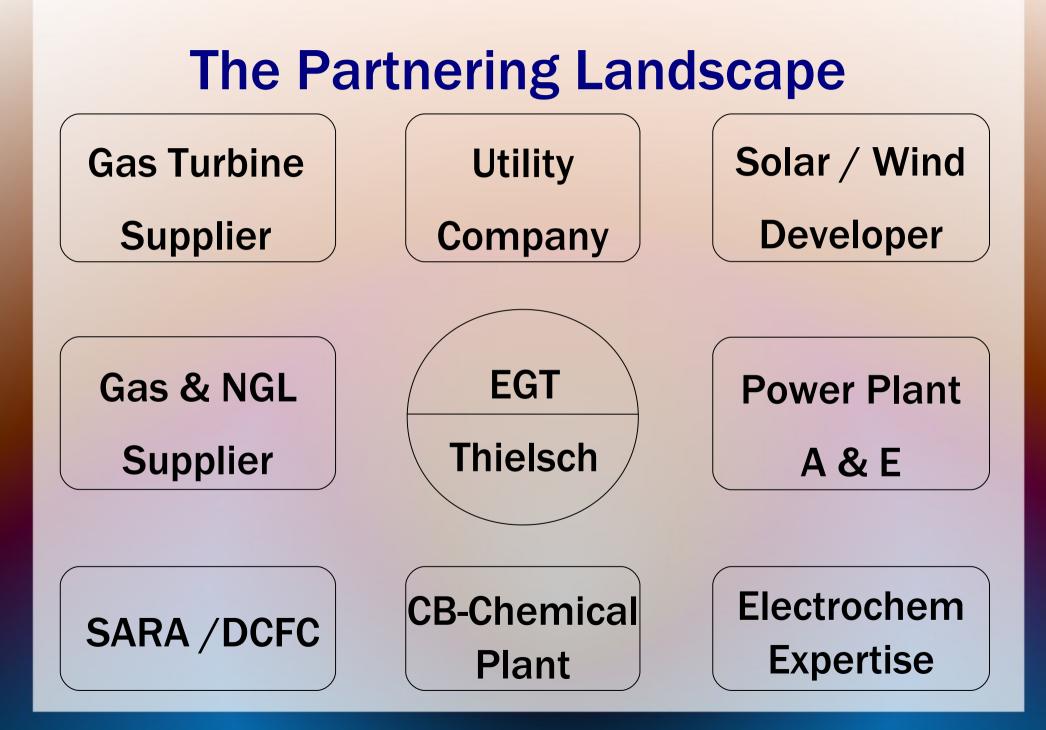
Electrolyte mixture composition (KOH/NaOH)

• Electrolyte temperature

Electrode materials and designs

 Industrial reactor concept screening and prototypes to industrial scale TRL - 6

Electric Reactor Status


- EGT has designed (F.E.E.D.) and proposed its patented Electric Reaction Technology for a specific industrial-scale demonstration TRL-6
 - TRL-4 and close to TRL-5
 - 1/12 of carbon black production line
 - 18 month program for EPC and Commissioning
 - EPC by Thielsch Engineering, Inc.
 - Carbon Black manufacturer as Operating Partner

Awaiting Funding

EGT Power Plant Consortium Development

Strategic Partners Sought

Electric and Gas Utility Solar or Wind Developer and Owner Gas Turbine and Compressor Manufacturer Carbon Black Company Chemical Company with Electrochemistry Power Plant A&E Natural Gas and NGL Supplier Scientific R&D Entitity with Electrochemistry

References

U.S.A. Renewables Data

http://en.wikipedia.org/wiki/Renewable_energy_in_the_United_States

Germany Renewables Data

http://www.iea.org/publications/insights/21stcenturycoal_final_web.pdf

California Renewables Data

http://www.cpuc.ca.gov/NR/rdonlyres/CA15A2A8-234D-4FB4-BE41-05409E8F6316/0/2014Q3RPSReportFinal.pdf http://www.caiso.com/Documents/FlexibleResourcesHelpRenewables_FastFacts.pdf http://www.chadbourne.com/Renewables-Face-Daytime-Curtailmentsin-California_projectfinance/ Direct Carbon Fuel Cells http://www.sara.com/RAE/APEG.html Thielsch Engineering, Inc. Confidential Information EGT's Patents http://www.egtgroup.com/ennistechnologies/ennispatents.html

Author Profiles

BERNARD ENNIS

Bernard Ennis, P.E. is President at EGT Enterprises, Inc. of Cedar Grove, New Jersey. He has consulted to industry, attorneys and insurance companies regarding ammonia-urea, ethylene, chlor-alkali, and power generation since 1993. Prior he worked in executive management and technical positions at CB&I, Inc. and KBR, Inc. He earned his B.S. and M.S. in Chemical Engineering at Villanova University. He has authored over 25 chemical technology patents. Member American Institute of Chemical Engineers, Association of Consulting Chemists and Chemical Engineers, Sigma-Xi Research Society.

www.egtgroup.com and ennis@egtgroup.com

Author Profiles

JACINTA SCHULZ

Jacinta Schultz is a Senior Process Engineer in the Process Group at Thielsch Engineering, Inc. of Cranston, Rhode Island. She is responsible for process design and project interfaces with clients and other Divisions for all aspects of projects concerned with process and design engineering, and project management services regarding ammonia-urea, methanol, gasification, Fischer Tropsche, power generation, and other chemical processes. She earned her B.S. in Chemical Engineering at the University of Rhode Island and is member of the American Institute of Chemical Engineers.

www.thielsch.com and jschultz@thielsch.com

To Be Continued –

Request a PDF ennis@egtgroup.com

Call to discuss

973 239 0404

Thank You